Next Generation (Meta)Modeling: Web- and
Cloud-based Collaborative Tool Infrastructure

Miklés Maréti2, Tamés Kecskés!, Rébert Kereskényi!, Bri,an Broll!, Péter
Volgyesil, Laszlé Jurdcz, Tihamér Levendoszky', and Akos Lédeczi'

! Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN,
USA
akos.ledeczi@vanderbilt.edu
2 Bolyai Institute, University of Szeged, Szeged, Hungary
mmaroti@math.u-szeged.hu

Abstract. The paper presents WebGME, a novel, web- and cloud-based,
collaborative, scalable (meta)modeling tool that supports the design of
Domain Specific Modeling Languages (DSML) and the creation of cor-
responding domain models. The unique prototypical inheritance, origi-
nally introduced by GME, is extended in WebGME to fuse metamodel-
ing with modeling. The tool also introduces novel ways to model cross-
cutting concerns. These concepts are especially useful for multi-paradigm
modeling. The main design drivers for WebGME have been scalability,
extensibility and version control. The web-based architecture and the
constraints the browser-based environment introduces provided signif-
icant challenges that WebGME has overcome with balanced trade-offs.
The paper describes the architecture of WebGME, argues why the major
design decisions were taken and presents the novel features of the tool.

Keywords: DSML, metamodel, collaboration, web browser

1 Introduction

Applying Domain-Specific Modeling Languages (DSMLs) for the engineering
of complex systems is becoming an increasingly accepted practice. Model In-
tegrated Computing (MIC) is one approach that advocates the use of DSMLs
and metamodeling tools [1]. The MIC open source toolsuite centered on the
Generic Modeling Environment (GME) [2] has been applied successfully in a
broad range of domains by Vanderbilt [3—7] and others [8-13]. (Note that this is
just a selected subset of domains.) Design space exploration with sophisticated
tool support [14] and the seamless integration of multiple third party software
packages [15] are the most striking examples of the power of MIC.

However, the widespread application of MIC has uncovered the limitations
of the tools. GME was designed as a desktop tool for the creation of small- to
medium-sized models by a single user (or a small group of co-located users). The
models are typically stored in a single file in a proprietary format. The elementary
modeling concepts are somewhat arbitrary and are closely tied to their respective

visualizations. The metamodels and the instance models are decoupled requiring
a translation step, making DSML evolution cumbersome. As a result of the ever-
increasing expectations, additional features have been added to the tools. For
example, to address scalability concerns both in the size of the models and in
the number of concurrent users, GME was extended with a Subversion-based
backend to store the models in multiple XML files [16]. However, pessimistic
locking to avoid incompatible changes to the model by multiple users proved
to be inflexible and non-scalable. It became clear that these are fundamental
limitations that need to be addressed at the very core of the architecture.

To address these limitations, we created WebGME, a web-based cyberin-
frastructure to support the collaborative modeling, analysis, and synthesis of
complex, large-scale information systems. The metamodels and the correspond-
ing domain-specific models are tightly integrated via prototypical inheritance
and stored in the cloud. Online collaboration, model version control, complex
DSMLs and large instance models are transparently supported. Clients are web
browser-based, resulting in platform independence and doing away with installa-
tion and upgrade issues. The user interface supports several built-in visualization
techniques. Multiple APIs are provided to interface with existing external tools
as well as to enable the development of custom domain-specific visualization
components and code generation tools.

This paper presents the architecture and major design decisions of WebGME.
Section 2 describes the meta-metamodel and the support for DSML specifica-
tion. Section 3 describes the collaboration approach provided by WebGME. The
data model is presented in Section 4, the overall architecture is described in Sec-
tion 5, while model visualization support is summarized in Section 6. Section 7
illustrates how multi-paradigm modeling is supported by WebGME. The paper
concludes with a brief overview of related work and conclusions.

2 Modeling Language Specification

The metamodel specifies the domain-specific modeling language. The metamod-
eling language consists of a set of elementary modeling concepts. These are the
basic conceptual building blocks of any given approach and corresponding tools.
It is the meta-metamodel that defines these fundamental concepts. These may
include composition, inheritance, various associations, attributes and other con-
cepts. Which ones to include, how to combine them, and what editing operations
should operate on them and how are the most important design decisions that
affect all aspects of the infrastructure and the domains that will use it.
Hierarchical decomposition is the most widely used technique to handle com-
plexity. This is the fundamental organization principle in this tool, too. Copying,
moving, or deleting a model will copy, move, or delete its constituent parts.
The single most important distinguishing feature of GME has been the unique
use of prototypal inheritance. Each model at any point in the composition hier-
archy is a prototype that can be derived to create an instance model. Derivation
creates a copy of the model (and all of its parts recursively, i.e., a deep copy), but

it establishes a dependency relationship between the corresponding objects. Any
changes in the prototype automatically propagate to the instance. Of course,
instances can be used again as prototypes for further specialization.

To illustrate this concept,
consider Figure 1. Let’s sup-
pose that we have a DSML
for modeling cars and the lan-
guage has a concept called
Component for modeling var-

— Compositon ious parts of a car. The top

==~ Inheritance half of the figure shows that

we have created a simple Car

Fco model that has an ABS brake
and a V6 engine. Notice that

an FEngine model was also

Sunroof

| 7 | ‘ABS ‘ ‘ ve' ‘ ‘ABS"

created and V6 is derived
from it. Note that all these

‘ ABS ‘ Engine ‘ car Sunroof models are derived from the
: Component model specified in

‘ ABS ‘ ‘ Ve ‘ ‘ car ‘ the metamodel (not shown).
Also note that solid lines

- mhertance represent composition, while

dashed line show inheritance.

Now if we take Car as a pro-

Fig. 1. Prototypical inheritance in WebGME totype and create a derived

Car’ instance model from it,

you can see that it will contain a new instance of ABS and a new instance of

V6 as well. Note that we also added a Sunroof to this new car model. The
corresponding inheritance tree is shown in the bottom half of the figure.

This approach is markedly different from inheritance in OO programming
languages or in other modeling languages such as UML. First of all, it combines
composition and inheritance. Note that Smalltalk and JavaScript have prototyp-
ical inheritance also, but it does not create new instances down the composition
hierarchy. Second, inheritance is a “live” relationship between models that is
continuously maintained during the modeling process. That is, any changes to
a model propagate down the inheritance tree immediately. For example, if we
change a property of the Engine model shown in Figure 1, it will also change
in V6 and V6’. On the other hand, if that property was already changed in V6,
then the property modification in Engine will not have an effect on either V6 or
V6’. But if we reset the value in V6 to the one inherited from Engine, that will
propagate to V6’ unless it has been overridden there beforehand. These rules
also mean that when a model is deleted, so are all of its instances and instances
of all of its children recursively. This variant of inheritance is a very powerful
way to help the modeler handle the inherent complexity in large models and
intricate DSMLs.

The novel idea in WebGME is to blur the line where metamodeling ends and
domain modeling begins by utilizing inheritance to capture the metamodel /model
relationship. Every model in a WebGME project is contained in a single inheri-
tance hierarchy rooted at a model called FCO, for First Class Object, as shown
in Figure 1. Metamodel information can be provided anywhere in this hierarchy.
An instance of any model inherits all of the rules and constraints from its base
(recursively all the way up to FCO) and it can further refine it by adding ad-
ditional metamodeling information. This is a form of multi-level metamodeling
with a theoretically infinite number of levels.

As a result of this approach, 1) metamodel changes propagate automatically
to every model; 2) metamodels can be refined anywhere in the inheritance and
composition hierarchies; 3) partially built domain models can become first class
language elements to serve as building blocks; and 4) different (meta)model
versions can peacefully coexist in the same project.

2.1 Meta-metamodel

A WebGME project is a collection of metamodels and models in a single compo-
sition hierarchy. Note that the words model and object will be used interchange-
ably throughout the rest of the paper. When the user creates a new project,
it contains two objects called Root and FCO. Root is the root of the composi-
tion hierarchy, so every object in the project will be a node in the composition
tree rooted at Root. FCO is contained by Root and it is the root of the in-
heritance hierarchy. Neither Root nor FCO can be deleted. Furthermore, the
meta-metamodel of WebGME specifies that Root can contain an FCO and con-
sequently, it can contain any other type of object. The meta rules of Root cannot
be modified either. In addition, the initial meta rules of FCO are empty. The
reason is that meta rules are inherited and they can only be extended and never
restricted. For example, if we want a DSML where any model can contain any
other kind of model, we can simply specify that FCO can contain FCOs. From
then on, there cannot be any restrictions on composition in this DSML.

Additional relationships between objects can be expressed with pointers and
sets. A pointer is a binary directed named association. Any object can have any
number of different pointers. A pointer definition includes its name and a list
of possible target objects. The latter restricts valid targets of the pointer to an
element of the list, i.e., a model or any model derived from it. For example, if
we want a pointer to be able to point to any other object in the project, we can
specify the list of its valid targets to contain FCO.

A pair of pointers can be visualized as a connection. For example, the default
WebGME editor takes any object with two pointers with the reserved names
of src and dst, displays the object as a connection and supports the customary
editing operations. Otherwise, connections are ordinary models; they can contain
children, have other pointers and can be derived, etc. Therefore, the connection
concept as such is not part of the meta-metamodel.

A set is a named association between one object and an unordered set of
other objects. It can be considered a collection of pointers. A set is similar to

UML aggregation, but the objects the pointers can point to are not limited to
be of the same kind. Any object can have any number of different sets. A set
specification is exactly the same as that of a pointer.

An attribute defines a property of a model. The metamodel specifies the
type of the attribute and a default value. Currently supported types are string,
integer, float and enumeration, but these can be easily extended.

An aspect (also called view) is a subset of a model’s children. Each model has
a default aspect that contains all its children. Additional aspects help manage
the complexity of models with many children. For example, a model of a car
might have separate aspects for its mechanical, electrical and hydraulic design.

Prototypical inheritance is at the core of the WebGME meta-metamodel. In-
herited children cannot be deleted, but new children can be added. Associations
within the composition tree rooted at the base are adjusted to refer to the cor-
responding new instances. Associations pointing outside of the base model tree
preserve their targets. New associations, attributes and aspects can be added.
Association targets and attribute values in an instance can be modified. The goal
of these rules is to be able to extend the inherited model, but prevent restricting
it. New meta specification can be added to any object anywhere in the inheri-
tance hierarchy. The rigid line between modeling and meta-modeling simply does
not exist any more. A brief video tutorial (available at http://webgme.org) ex-
plains and demonstrates these concepts.

2.2 Cross-cutting concepts

Cross-cutting concepts are always difficult to model. In GME, the only way
to capture relationships between models in different branches and/or levels of
the composition hierarchy is through pointers and sets. However, the visual
depiction of such associations is not intuitive at all since most tools display
models according to composition, that is, they typically show the children of
one model in one window (grandchildren may show up as ports). The target of
a pointer can be indicated by its name and navigation to it can be supported,
for example, by a double click operation, but an intuitive visual depiction of
such relationships is sorely missing. For example, a connection between far away
objects is supported by the meta-metamodel, yet there is no way to actually
show it. To address this problem, WebGME introduces the concept of crosscuts.

A crosscut is a collection of objects that the modeler wishes to view together.
Currently, the user can manually drag objects into a crosscut view. In the near
future, we will define a simple query language that can be used to issue one-time
queries to collect models from anywhere in the composition hierarchy. Existing
associations between objects in a crosscut are depicted by various lines between
the objects. For example, inheritance is shown similar to UML class diagrams,
while pointers are visualized with lines and arrows. In addition to visualization,
the main utility of crosscuts is that they serve as association editors. The target
of pointers and set membership can be edited here. Deleting a model from a
crosscut does not delete the object from the project, it simply removes it from
the given crosscut.

Each crosscut has a context model, the designated container for new model
elements created in the crosscut. (Note that it is atypical to create new models
since a crosscut is meant to be a collection of already existing models. However, a
connection is a model with two pointers, so allowing new connections in crosscuts
was the motivation behind this design decision.) The default context is Root.
As Root can contain anything, crosscuts can be freely constructed. However,
if the modeler chooses a context different from Root, the composition rules of
the metamodel apply (even though crosscut containment is not composition).
This is actually a great way to control and manage crosscuts. On the flip side,
if one wants a crosscut with no constraints, but wants to avoid creating too
many crosscuts in Root, one can simply create a model and specify that it can
contain FCOs. Any instance of such a model can now serve as the context for
unconstrained crosscuts.

One use for crosscuts in WebGME is

Fco & for metamodeling. Recall that meta infor-
+ ATTRIBUTES mation can be specified anywhere in the
:SE;.;STM::I; composition hierarchy. Therefore, there is
¥ ASPECTS no single model to show to edit the meta-

‘ ‘ model of the DSML. In WebGME; a cross-
cut is created for the metamodel where

STATE £ TRANSITION £ K
5 s R T the user drags in all models that need
0l- |+ CONSTRAINTS guard: string to contain DSML specification. It is there
L el and only there, where meta information

can be specified. Of course, the meta-

model is a special crosscut, because a new

Fig. 2. HFSM Metamodel association created there does not actu-

ally create a new instance of a pointer,

for example, but instead specifies that the given kind of pointer of a model can
point to the selected model (and its instances).

Consider Figure 2 that depicts the metamodel of a simple hierarchical finite
state machine (HFSM). It shows that both State and Transition are derived
from FCO. Note that unlike in any other tool we are aware of, this inheritance
relationship was not drawn explicitly by the user. Instead, when the State and
Transition models were created in the first place, they were instantiated from a
model, in this case, FCO. The metamodel only displays these already existing
inheritance relationships; they cannot be edited per se. On the other hand, the
associations in Figure 2 were created in the meta crosscut. For example, the src
and dst pointer specifications were drawn by the user specifying that a transition
represents a relationship between two states. The default WebGME editor, in
turn, will show these as connections (explained above) as expected in an HFSM.

ey

ol

3 Collaboration

Large-scale information systems modeling poses unique challenges that ad-hoc
use of simple modeling tools cannot adequately address. As the amount of data

stored, manipulated, and analyzed and the number of users and stakeholders
spread across multiple institutions increase, the coordination of the modeling
process becomes exponentially more difficult. There are known domain specific
solutions targeting the versioning and configuration of coarse grained model
hierarchies, such as the approach for CAD designs [17], but most domain models
are much finer grained. Domain specific (meta)modeling tools need to scale up
to support decentralization, collaboration, domain evolution and at the same
time, ensure consistency.

Because of the very high level of interconnectedness among the models, even
simple operations (such as copy or delete of a hierarchical model) can affect
a large part of the model database. In our experience, this renders lock- or
partition-based cooperation infeasible, especially when the system must always
present, consistent information to users and external tools. In large-scale mod-
eling, users should have decentralized access to the model database where con-
current modifications even to the same set of models are possible. WebGME
addresses this challenge by introducing a very lightweight branching scheme
where different branches structurally share the same models if those have not
been modified (see Section 4).

WebGME supports online collaboration where changes are immediately broad-
cast to all parties and everyone sees the same state. This is similar to how Google
Docs works, except here the models have a much richer data model making con-
sistency management more challenging. Since branch updates are very cheap
and store only those objects that are explicitly modified, these changes can be
broadcast to all participating parties and concurrent editing conflicts can be
detected, retried, or rejected with immediate visual feedback.

The exact datamodel supporting the quick dissemination of objects between
the server and clients is described in the next section. At this point, it is enough
to know that every revision in the object database is uniquely identified by the
hash value of a commit object, and that a commit object uniquely describes all
models in the model hierarchy at a particular time instant.

Clients can freely create commit objects and send branch update messages
to the server. Each branch update request contains the hash values of the old
and new commit objects, and the database backend verifies (among others) that
the old hash value matches the current branch hash before it is updated. With
this protocol, the backend ensures that each branch has a linear history and
rejects those branch updates that would fork the branch. If a branch update is
accepted, then the new hash of the commit object is broadcasted to all clients.
If a branch update is rejected (because another client has made a concurrent
change and the old hash value does not match), then the client has the following
three options: 1) reject the change made in the user interface and present the
new version to the user, 2) automatically fork the branch (creates a new branch)
and indicate this to the user, or 3) perform a merge of the local modifications
to the branch with the changes already in the database and retries the branch
update request. Currently, we support option 1 only, as automatic merging is
not yet implemented.

saB (D) SB: SB B G () @
A A A A(3) B(r4) SA(r3)B(ra) SA (ra)
B(r3)

Fig. 3. Evolution of a branch during concurrent editing

As a simple example, let us consider two users concurrently editing a model
hierarchy (see Figure 3). Initially, there is only one revision (rl), and both users
(A and B), as well as the server (S), agree that the head of the branch is r1. Then
user A makes two quick changes on his client computer (r2 and r3), which are
immediately displayed (since all changes are performed synchronously without
communicating with the server), and two branch update messages (r1—r2 and
r2—13) are sent to the server. After some time the server gets the r1—r2 message,
at which time user B still sees revision rl, the server thinks that the head is at
revision r2, and user A sees revision r3. The server sends out a notification to
all clients that the head of the branch has changed to r2. User B displays the
new head (r2), but user A ignores this update because it sees that he is already
ahead of r2 and knows that it has already sent those updates.

At this point user B makes a concurrent change (r4) branching the history,
but she does not know this yet, and notifies the server with an r2—r4 message.
The server gets the r2—r3 message from A first in this example, so it updates the
head to r3 and notifies all clients again. Then the server gets the r2—r4 update
message from user B, but ignores it since the old revision in the update message
(r2) does not match the current revision (r3). User B will get the head change
message from the server with revision r3, and sees that this is not an ancestor of
his current revision (r4). At this point user B knows that the branch has forked
and his version is not the official one. Currently, we notify user B of this situation
and discard his change, but with automatic merging, the client program for user
B can perform the merge (r5) and can retry the branch head update request
with r3—rb. If user A does not modify the branch in the meantime, then the
server accepts this update and notifies user A.

In the near future, WebGME will also support merging branches. This will
allow for an additional kind of collaboration where users fork the project, work on
their own branches and once they are ready with their modifications, merge the
changes back into the master branch. The structural consistency of the models
are maintained by each basic operation and verified at merging. In most cases,
the system will able to perform the merge automatically, but should a conflict
arise because of conflicting modifications to the same models, the system will
reject the merge and offer manual or guided conflict resolution on the client.

The version control scheme already enables users to work on and analyze
consistent snapshots of the database without stopping others from modifying

the models. This means that long running model translators, code generators or
analysis tools can run while users carry on model building concurrently.

It is instructive to see why current solutions cannot meet the requirements of
large scale modeling. Distributed Revision Control (DRC) is a well-known and
scalable solution to source code management, but it requires clients to download
full revisions to make changes [18]. However, we need to allow users to delete,
copy, and move hierarchical models consisting of thousands of elements without
downloading the internal structure of those models to the client. Moreover, as
we have explained, the rich inter-model relations (such as inheritance) would
also require the client to potentially download and modify an even larger set
of objects. Many cloud-based information systems provide extreme scaling (e.g.
Twitter, Facebook, Wikipedia, etc.), but do not provide branching and consistent
snapshots. For example, Wikipedia has revision control of individual pages, but
it does not allow users to concurrently fork the entirety of Wikipedia, update
thousands of pages, and merge these changes back. Online collaborative text and
diagram editors (e.g. Google Docs, Lucidchart, etc.) do not support branching
and store individual artifacts separately with no integration. On the other hand,
WebGME enables large-scale collaborative modeling with refactoring capabilities
and consistency guarantees.

Beyond supporting collaborative online work, model evolution, and conflict
resolution within individual projects, in the future, WebGME could foster model
and language reuse on a much larger scale than it is currently practiced. De-
sign publishing, discovery, and change tracking are poorly supported by current
desktop-based model editors. We believe that the stimulating effects of Source-
Forge, Google Code, and GitHub (among others) on code reuse can and should
be replicated for model-based design. The WebGME infrastructure can serve as
cloud-based live repository of DSMLs and corresponding domain model libraries
as current online project repositories are heavily source-file oriented and, hence,
inadequate for model-based design collaboration.

4 Data Model

In this section, we describe the underlying data model of the system as an
object graph and explain how the elementary operations (copy, delete, move,
instantiate, update, etc.) are efficiently implemented without sacrificing extreme
scalability and data integrity. First, we present a simplified view of the proposed
architecture, then indicate the real difficulties.

Our primary goal is to ensure structural sharing of model objects between
different branches of the database. We achieve this by organizing the objects
into a containment hierarchy tree, where each object in the database stores the
identifiers of its children, but not that of its parent.

If an object (e.g., G in Figure 4) needs to be updated, we simply make a copy,
assign a new identifier (G’), recursively copy the parents (C, A) and replace the
old child identifiers with new ones. This way the old and new versions of the
graph structurally share a large portion of their objects. Since we do not store

the parent in the child object, we can simply implement the copy operation as
adding the identifier of an already existing model to the list of children. From
the perspective of the user (and other tools), we have a new deep copy of the
model, but in the database we did not have to recursively traverse its children
because we just reused old content.

We never modify any model object in
the database, only create new objects that
@ __ link to the old ones. Therefore, we can effi-
T ciently traverse and compare different ver-
sions of the model database and discover
if large portions of their objects are the
same. Instead of using standard identifiers
for each object, we use a hash (SHA1) of
the content of the model. Even if the same
object is recreated on different clients (or
the same modifications are preformed on
the same client later), the modified objects will have the same hash value and
only a single database object is created. The object database contains one root
object for each version of the model, essentially tracking its evolution. The root
objects are linked by commit objects that record parent commits, the new root
object, and among others, the user who created the new tree. Another benefit of
the use of hashes is that clients (browsers) can cache model objects freely, since
they are not going to get modified, and can verify the integrity of the models.

Fig. 4. Structural sharing of objects

The client (browser) does not need to download the whole database in order
to perform operations on the models, only those objects that are necessary to be
displayed to the user. For example, we can move, copy, or delete whole subtrees
without ever downloading the internal objects. Note that the discovery of the
model database is inherently asynchronous; the client needs to download new
content, but modifications can be performed locally without server interaction
except for eventually saving the new version of the model objects to the server.
The saving of the new objects can be arbitrarily delayed, unless the user wants
online collaboration with other users or wants to minimize accidental branch-
ing. Therefore, it is possible to support offline work where the user can continue
editing the model without restriction if all the required content is already down-
loaded to the browser. The integrity of the modifications is maintained, and the
changes can be uploaded to the database when connectivity is restored.

So far what we have described is very similar to how Git [19] operates, except
we do not want to download the whole repository or the whole tree to the client,
and we intend to use the browser as our management and editor tool. The real
challenge is to track and update the rich inter-model relations in a consistent
way without sacrificing the benefits presented above.

Imagine that we have an association between objects H and M in Figure 4,
and we want to delete object G. Since all operations are hierarchical, object M,
and therefore, the association between M and H needs to be deleted as well.
As we have explained, the client loads only those objects that are absolutely

necessary, which includes the parents of loaded objects, so the browser knows of
A, C, and G, but not of H or M. Somehow we need to change H without loading
it and remove that association that is visible in the old version of H. WebGME
stores associations not at M or H or both, but at their common ancestor, that
is, at C. Therefore, when we want to delete object G we immediately know all
external associations that tie an object within G to another object that is not
inside G (these associations are stored at C' and A), so we can remove these
when object G is deleted.

During a deep copy operation we
also need to copy associations, but

@ this case is more complicated than

_— 1 T deletion because we need to distin-

@ @ guish internal and external associ-
LN < LN ations and consider their direction.
‘ @ @/@@ @ @ Suppose that we make a copy G”

- (T] of G and insert it in parent B (see
a @ @ @ @ @ Figure 5). An association is internal
if both of its endpoints are within
G, for example K-L. Internal associa-
tions are stored within the subtree of G because their common ancestors are also
below G, so these associations are automatically copied. An external association
pointing from an object below G to an object outside of G, e.g. from M to H,
needs to be copied and the new association will point from M” to H. An external
association pointing from outside of G to an object within G, e.g. from I to M,
is not copied because those reference a specific object. As we have seen, we have
to maintain the direction of associations to properly maintain the semantics of
copy and delete operations, and in this regard, associations behave like pointers
in programming languages. Observe, that if G is loaded to the client and the
new parent B of G” is also loaded, then we can perform the copy operation and
update all external associations at C and A without loading any new objects.

Fig. 5. Copying of associations

Movement of objects is the most complicated operation in the containment
hierarchy, but even in this case, all associations can be properly updated within
the already loaded parent objects. This means that all basic operations (delete,
copy, move) can be performed in the client on arbitrary large subtrees without
loading any new objects or even talking to the server.

The most important inter-model relationship is inheritance, which is signifi-
cantly more challenging to support than associations. Simple changes in a base
type can have an influence on all subtypes, but again we do not want to load all
instances just because we modify the base type. Containment and inheritance
interact in surprising ways, for example, deletions can have a cascading effect
through containment and inheritance. To combat these, we dynamically com-
pute the inheritance, where each object stores internally only those attributes
and children that are different than those that are already present in its base
type. This logic works even for associations, however, some extra logic is needed
to allow the deletion of associations in instances. Currently, moving of objects

within basetypes that already have instances are not supported on the client be-
cause this would still require the traversal of the inheritance chain. Deletion and
coping does not have this restriction, and currently we are investigating ways to
be able to support moving of objects in this case, as well.

To support this datamodel and online collaboration, the database backend
provides the following two services: 1) respond to load and save requests of
objects that are identified by their hash, and 2) store the current hash value of
the commit object for each branch and broadcast changes of this hash value to
connected clients. Since each object is uniquely identified by its hash value, the
load and save requests can be completely reordered and no coordination between
clients is required (only hash collisions need to be monitored for safety). On the
other hand, updates of the current branch hash has to be serialized and all new
objects should already be in the database when the new hash value is updated
and broadcasted. Once the branch hash value is broadcasted, the clients update
their user interface and download all missing objects from the backend.

With the datamodel described above, users can concurrently delete, copy and
move entire subtrees consisting of millions of objects with the same efficiency as
operating on a single object. Moreover, all these operations can be performed
immediately on the client with no database round trip, so WebGME can provide
instant visual feedback even if the network connection is slow or disconnected.

5 Architecture

WebGME is designed from the ground-up as a modern web application, using
a single page interface and advanced AJAX communication patterns. Figure 6
illustrates the high-level system architecture. By choosing JavaScript for imple-
menting all core components and with a re-configurable stack of data access
layers (database driver, cache, remote access), WebGME allows for different
deployment scenarios tuned for scalable collaboration, offline work and/or for
high-performance and high-bandwidth model interpretation. In the most com-
mon deployment model, a relatively thin server-side component—running as
a Node.JS process—acts as a communication bridge between the model stor-
age (MongoDB) and multiple browser-based clients. Beyond providing serialized
read /write data access, it sends broadcast messages to all connected clients after
each update—using WebSockets as the transport protocol for both tasks. In a
high-performance scenario, a single client can be deployed directly and exclu-
sively on top of the database interface in a Node.JS container on the server.
Intermediate layers in the data access stack also enable intentional or accidental
(e.g., due to network problems) offline work.

The most critical components (Core and Client) are deployed on top of the
data access stack. These layers assemble and maintain consistent in-memory
snapshots of the model hierarchy and provide Model API, the common basic
interface for all higher level components. This interface is directly used by the
visualization stack (Section 6) and by high-performance plug-ins implemented
in JavaScript. These plug-ins can target specific domains for a wide spectrum

of automated tasks, such as model analysis, simulation, verification, code and
report generation, model transformation, and design space exploration. Also, the
architecture can be extended by domain-independent plug-ins for providing and
integrating new generic tools.

Note that developing new
plug-ins against the Model API
o requires the components to be

developed in JavaScript. To
R m | M:m v overcome this limitation and

Tree (| Fy——— | provide data access for the
models for the widest devel-

oper community, a REST web

HTTP(S), WebSockets
//;: services API is also provided

Concrete Visual % = GUlTOO;KIT
==]

NioMd TNSa
N[ON1g JWINID

Browser

s by our server. This interface
| Mook API | MobkL API | |NOTIFICATION5|| QuERY PROCESSING | 5

oo ¢ enables language and technol-

GENERI(PLUG'N' DSMLPLuGINl | DATABASE ADAPTATION AND CACHE | v .
ogy independent access to the
serverside Flugins <SE> same data-model that is avail-
able via the Model API. The
trade-off of the REST in-
Fig. 6. High-level system architecture terface is slower access (sig-

nificantly higher latency and
serialization/de-serialization overhead). Note that both native JavaScript and
REST components can be deployed on client and server side. Although server-
side REST components still use the same general infrastructure as those on the
client side, these benefit from the physical proximity to the server.

Our experience shows that higher-level domain-specific APIs can dramati-
cally boost the productivity of domain developers. These auto-generated APIs
‘speak the language’ of the domains, and can significantly reduce the time and
effort needed to develop new plug-ins. The definition and generation of these
APIs—based on the meta information in the model—is part of our future work.

Another recurring pattern we identified in a large sample of existing third-
party tools uses a semi-offline processing approach for the model hierarchy. These
tools initially traverse the entire model and store it in an intermediate format for
performance and convenience reasons. These types of components can leverage
the model export/import facility on our server, which supports full and partial
(de-)serialization of the models in JSON format. This capability is integrated
with the REST service interface.

Beyond acting as a data bridge, sending broadcast notifications and providing
the REST API, the current server-side component is responsible for bootstrap-
ping the browser application with static content and for implementing authenti-
cation and authorization tasks. The authentication infrastructure is based on the
Passport framework [20], which supports a comprehensive set of strategies and
protocols from simple username/password pairs to OpenID and OAuth providers
(e.g. Facebook, Google).

6 Visualization

Traditional MIC model editors enable an extremely fast early prototyping phase
by providing default visualization and user controls for each element of the DSML
language being developed. These editors provide built-in user interface logic for
each fundamental (meta-meta) concept. Although, parts of the built-in behav-
ior is customizable—with bitmap and vector images or by providing custom
rendering and event handling code plug-ins—many environments make it diffi-
cult to implement a fundamentally different user interface experience. Deviating
from the default mapping of abstract model elements to visual primitives or
implementing radically different visual behavior is becoming exponentially more
difficult. Thus, after the early prototyping phase, many DSML designers strug-
gle with developing a refined domain-specific and user-centric editor experience.
Typically these custom views include tabular data representation, textual for-
mats (source code, XML, JSON), form-based user interfaces, or complex data
visualization with precisely controlled layout and rendering. In all these cases,
customization needs to reach beyond the rendering of individual model elements
and has to control the overall mapping of abstract data model elements to visual
primitives and UI actions to operations on the data.

Hence, WebGME provides a visualization toolkit as opposed to the customiz-
able model editor approach of GME. The key difference is that with the toolkit,
the DSML designer has more control over the visualization aspects of the lan-
guage. Elements of the toolkit include layout managers, line and area rendering
primitives, and in-place text editors. These elements handle the rendering and
UI interaction tasks. The DSML designer will use the graphical building blocks
and provide the mapping between the model database (Model) and the toolkit
elements (Views and Controllers).

Visually complex and large models pose scalability challenges for the Ul
much sooner than for the underlying model database. Graphical model editors
typically address the visual scalability problem by either providing flat ‘model
canvases,” with which the model can be partitioned to multiple sheets with some
shared entities, or by using hierarchical decomposition. Examples for the former
approach are UML class diagrams, circuit schematics, and Petri nets, while the
second approach is more prevalent in modeling signal flow graphs, hierarchical
state machines, and design spaces. Both methods have limitations: the model
builder has to reason about a ‘mentally stitched” model or constantly navigate
into a deep model hierarchy while taking extra effort to model cross-cutting rela-
tionships across distant model elements. Filtered views (i.e., aspects)—showing
only a subset of the elements of the model—is a simple but insufficient feature
towards providing a scalable user interface.

Both GME and WebGME supports model canvases, hierarchy and filtered
views (aspects), but WebGME takes a significant step beyond these standard
techniques with the introduction of crosscuts. Crosscuts decouple visualization
from the model hierarchy and provide completely user-defined orthogonal views
of the models. The default visualization in crosscuts focus on associations by
displaying any existing relationship between members of the crosscut with lines,

as well as provide the means to modify them or create news ones. However, any
other type of visualization can be implemented as required by the given domain.
Elements of the crosscut can be selected by direct user actions or soon user-
defined queries can gather model objects and populate the crosscut. We believe
that by providing powerful query-based cross-cutting views one can build truly
scalable domain specific interfaces.

7 Multi-Paradigm Modeling Support

The best way to show how WebGME supports multi-paradigm modeling is
through an example. Consider a simple DSML, a hierarchical signal flow lan-
guage similar to Simulink called SignalFlow. Figure 7 shows WebGME with the
SignalFlow DSML inside a Chrome browser. The metamodel is shown on top.
The main concepts are Compound and Primitive, signal flow operators that are
the composite and leaf nodes of the model hierarchy, respectively; Input and Out-
put ports that provide the signal interface for the operators; and Flow that are
the connections between ports. Parameters (with DataType and Size attributes)
provide configuration parameters to operators.

@ -= SignalFlowSystem @ 11 x

<« C | [} editorwebgme.org 00 =
SignalFlow @ master 2 akos &
& A4 e |l L v |BENLE &¢S > Q - L ENENE
PANEL + E- SignalFlewhMode! @ B
FILTER Compos
PARANETER 0] & 4% ROOT
TATTREOTES | 0.t T RTTRIBUTES & Feo
. N DateType: siring + CONSTRAINTS
Set membership Qi |mevae suns S o mgﬂ::(_e:e‘;
Sze integer 7 7 udioRa
Gt b
Crosscus + CONSTRAINTS.] CenterFreq
& mspEcrs % Cutoff
Graph view ST Display
AL FRMITVE & CoupouND | B ch
) functen: string 3 CONSTRAINTS S T R 8] samplingRate
Vieta il + CONSTRAINTS + ASPECTS 0 |+ ConsRaTs | 2=l 5 CORSTRAINTS 5 Flow
¥ AsPECTS Paremeter: 3| L+ ASPECTS = 7| Aseects S Fow
et memberehn Pameer 1| [o 3 =
Set membership - . ‘ ‘ S Flow
=
o & Flow
Crosscut PARANFLOW | weur o outPuT B {‘; -
RIS o~ +ATTRBUTES + ATTREUTES S
Graph view + CONSTRANTS + CONSTRAINTS + CONSTRANTS = Flow
5 RspecTs + Aspects + AsPEcTS & Flow
& Flow
COMPOUND (%
[=hd Al Parameter SF
= FM RECEIVER GUD cladsasTessze
D feaze2sasT
INPUT CHOEUY (& - Attrioutes
Qe USRP SOURCE (3] Cht
S = = mfE |n.me ® FM Receive:
= Fp—qin out
S g || T
PRIMITVE & LOCAL OSCILLATOR (2] = ot Port)
£ isPo
e
e
+ Pointers
sssign
WEFMDEMOD (% GAIN <3 SPEAKERS (@) -
b ol - = base Gompound (-2/-14
-5 |]
| e | L = |
DisplayFor e

Fig. 7. Example Signal Flow DSML in WebGME

The left side of the screen shows the panel control buttons and below them
the Part Browser that displays the models that can be instantiated inside the
model loaded in the current panel as defined by the metamodel. Dragging and
dropping a model from the Part Browser creates a new instance of the given
model. The top right side of the user interface shows the Object Browser that
shows the composition hierarchy of the project starting at Root. Below is the
Property Editor where attributes, preferences and other properties of the cur-
rently selected model can be edited.

The user interface of the tool provides quite sophisticated features especially
considering the browser-based execution environment. Drag and drop, context
menus, search, autorouting, Bezier curves, and various visualizers in addition to
what is shown in the figure are all provided. However, a detailed description of
the user interface is beyond the scope of this paper.

Suppose we want to create a new DSML, that supports Signal Flow models,
but also allows the modeling of simple multiprocessor hardware and the assign-
ment of signal flow components to processors. Similarly to GME, WebGME also
supports libraries. We can select any model in a project and export it as a li-
brary. This takes the composition tree rooted at the given model and generates

W -= SignalFlowSystem @ i~ %

« C [} editorwebgme.org w0 =
SignalFlowSystem @ master Rakos &
& A+ € & »- B NLE &POS > & HAQFM
PANEL 12 + =- HardwareModel @ | SignalFlowModel OSJCCTDROWSER
Composition ARDNAREMODEL T FILTER Composition Inheritance Crosscut
& CONSTRAINT S
+ aseeCTs & Foo
Set membership an > fal FM Receiver
4 Jaf HardwareMode!
CRscs b . 5 HWConn
CEEED | HwiNoDE] HWCONN & & HWConn
—ATTREGTES T RTREOTEY < {7 ATTREOTES % HWConn
PANEL 2: + CONSTRAINTS | 5557 |3 CONSTRAINTS [<—_—| + CONSTRAINTS S HwConn
+ aswecTs + AspeCTs + mspeCTs
Composition] Node1
3 Node2
=0 Crosscut0@Q | Crosscut 1 %] Node3
3 Nodea

USRP SOURCE (2
— = LOCAL OSCILLATOR G5 e G LOWPASS FLTER_G) » 14l Language
= B G z o

| Centerfr] IF Frequ "

COMPOUND (%

RTY EDITOR

assen D [103666177911708.

|GU\D soueTn s950 585

- Attributes
NODE!

e @ ne
~ META

ishbstract no

isPort wo

HWNODE = valicPlugins

~ Pointers.

hssen R S B <)
¢ base HWNode (-2/-5) &

FTDSLY ()

WEFU DENOD (2]
o Audio

s sty Srams

- Preferences

sQuELcH (3]
o o

Leve __E

Fig. 8. Processor Assignment for Signal Flow Models

a JSON file from it. In our example, the SignalFlow metamodels were stored
not directly in Root, but in a model contained by Root called Language. We
exported it and then imported it into a new project called SignalFlowSystem.
Imported libraries are read-only models, but they can be derived and associa-
tions can point to any part of them. In this new project, we created a simple
computer hardware DSML. Finally, the only thing missing from the metamodels
is the specification of the assignment. This is the concept that ties together the
two paradigms. This can be done simply by dragging in the Processing model
(the signal flow base component) in the Hardware metamodel and adding a new
pointer to Processing called assign that can point to HWDNodes (see top of Fig-
ure 8). Note that none of the composition rules were changed, that is, signal
flow models cannot contain hardware models and vice versa. The only relation
between the two sub-languages is the assign pointer, but it cannot be visualized
in any of the models nicely. But we can create a crosscut that can contain Pro-
cessing and HWNode models and it will show the assignment pointers and also
enables the user to edit them as shown in the bottom part of Figure 8.

8 Related Work

There have been promising approaches to (i) collaborative modeling, (ii) web-
based modeling environment, and (iii) model versioning. This section reviews
the results closest to our solutions.

Collaborative modeling is used in specific domains such as mechanical en-
gineering [21], automotive industry [22], and UML [23]. A collaborative DSML
definition process is presented in [24, 25] which could be supported by WebGME.
SLIM [26] is a prototype of a collaborative environment executed in a web
browser. The Connected Data Objects (CDO) [27] is a model repository and a
run-time persistence framework for EMF. It supports locking, offline scenarios,
various persistence backends, such as Hibernate, and pluggable fail-over adapters
to multiple repositories. As a part of CDO, the Dawn framework supports col-
laboration on the user interface level with functions such as locking, conflict
detection and resolution. It is integrated with multiple graphical editors. In con-
trast with our approach, CDO supports model integration on the model level,
and not on that of the edit operations. If two transactions are trying to modify
the same object, CDO signals a conflict for the second transaction as opposed
to our approach, where this creates a new branch automatically. CAMEL [28] is
also an eclipse plugin that supports collaborative interaction via modeling, draw-
ing, chatting, posterboards, whiteboards, and it is capable of replaying online
meetings. Its focus is on collaborative communications rather than versioning
and collaborative use of domain-specific languages.

AToMPM |[29], a web-based metamodeling and transformation tool for Multi-
Paradigm Modeling, is the closest to our work. While many of the authors’
architectural decisions are similar to ours, versioned repository, the fusion of
metamodeling and prototypical inheritance and crosscuts are the biggest differ-
entiating factors.

A summary of model versioning can be found in [30]. A formal approach is
contributed in [31]. [32] describes an extension of AMOR [33] to facilitate model-
based merging. [34] describes precise methods for parallel dependent graph ma-
nipulations when insertion has priority over deletion. Our philosophy is rather
to avoid situations where merge is needed — the fine grained commit cycles serve
exactly this purpose. However, especially after offline work, these solutions can
extend our approach when two branches need to be merged.

Web technologies have advanced to the point where it is feasible to build user-
friendly and visually appealing user interfaces with good performance inside a
web browser. Lucid Charts [35] and CircuitLab [36] are excellent examples of
what is possible. Some of these even support online collaboration. On the other
hand, these tools 1) employ relatively simple, typically flat data models and 2)
are very specific to their respective domains. They do not solve the challenges
associated with evolutionary language design, configurability, branching, and
extensibility.

9 Conclusions

WebGME has a number of novel features and several advantages over desktop-
based (meta)modeling tools. The browser-based client is platform-independent
and does away with installation and software update issues. The data model and
software architecture were designed from the ground up to provide scalability,
seamless collaborative modeling and powerful model versioning. The prototypi-
cal inheritance and crosscuts are probably the two most unique features of the
WebGME meta-metamodel providing DSML and model complexity manage-
ment.

WebGME is still under development. The two most significant missing pieces
are merge support for branches and a constraint manager. The merge operation
is critical to enable other modes of collaboration beyond immediate concurrent
updates. Constraints also play an important role in DSMLs. GME has an OCL-
based constraint manager which proved very useful for people who were willing to
learn OCL, but were ignored by most users. What constraint language WebGME
will ultimately utilize is still up for debate.

WebGME supports multi-paradigm modeling using inheritance, libraries and
crosscuts. Multiple inheritance would be really powerful for metamodeling in
general and multi-paradigm modeling in particular. Merge may enable multiple
inheritance support, however, it is a really challenging concept because of the
complex interplay between composition and inheritance.

9.1 Acknowledgement
This work was sponsored in part by the Defense Advanced Research Project

Agency (DARPA) and by the European Union and the European Social Fund
via project FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0013).

References

10.

11.

12.

13.

14.

15.

16.

17.

Sztipanovits, J., Karsai, G.: Model-integrated computing. Computer 30(4) (1997)
110-111

. Lédeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., Kar-

sai, G.: Composing domain-specific design environments. Computer 34(11) (2001)
Long, E., Misra, A., Sztipanovits, J.: Increasing productivity at saturn. Computer
31(8) (1998) 35-43

Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated development
of embedded software. Proceedings of the IEEE 91(1) (2003) 145-164

Mathe, J.L., Ledeczi, A., Nadas, A., Sztipanovits, J., Martin, J.B., Weavind, L.M.,
Miller, A., Miller, P., Maron, D.J.: A model-integrated, guideline-driven, clinical
decision-support system. Software, IEEE 26(4) (2009) 54-61

Lattmann, Z., Nagel, A., Scott, J., Smyth, K., Porter, J., Neema, S., Bapty, T.,
Sztipanovits, J., Ceisel, J., Mavris, D., et al.: Towards automated evaluation of ve-
hicle dynamics in system-level designs. In: ASME 2012 Computers and Information
in Engineering Conference, ASME (2012) 1131-1141

Levendovszky, T., Balasubramanian, D., Coglio, A., Dubey, A., Otte, W., Karsali,
G., Gokhale, A., Nyako, S., Kumar, P., Emfinger, W.: Drems: A model-driven dis-
tributed secure information architecture platform for managed embedded systems.
IEEE Software (2014) 1

Bagheri, H., Sullivan, K.: Monarch: model-based development of software archi-
tectures. Model Driven Engineering Languages and Systems (2010) 376-390
Bézivin, J., Brunette, C., Chevrel, R., Jouault, F., Kurtev, I.: Bridging the generic
modeling environment (GME) and the eclipse modeling framework (EMF). In:
Proceedings of the Best Practices for Model Driven Software Development at OOP-
SLA. Volume 5., Citeseer (2005)

Bunus, P.: A simulation and decision framework for selection of numerical solvers
in. In: Proceedings of the 39th annual Symposium on Simulation. ANSS ’06,
Washington, DC, USA, IEEE Computer Society (2006) 178-187

Czarnecki, K., Bednasch, T., Unger, P., Eisenecker, U.: Generative programming
for embedded software: An industrial experience report. In: Generative Program-
ming and Component Engineering, Springer (2002) 156-172

Stankovic, J., Zhu, R., Poornalingam, R., Lu, C., Yu, Z., Humphrey, M., Ellis, B.:
Vest: an aspect-based composition tool for real-time systems. In: Real-Time and
Embedded Technology and Applications Symposium, 2003. Proceedings. The 9th
IEEE. (May) 58-69

Thramboulidis, K., Perdikis, D., Kantas, S.: Model driven development of dis-
tributed control applications. The International Journal of Advanced Manufactur-
ing Technology 33(3) (2007) 233-242

Mohanty, S., Prasanna, V., Neema, S., Davis, J.: Rapid design space exploration
of heterogeneous embedded systems using symbolic search and multi-granular sim-
ulation. ACM SIGPLAN Notices 37(7) (2002) 18-27

Hemingway, G., Neema, H., Nine, H., Sztipanovits, J., Karsai, G.: Rapid synthesis
of high-level architecture-based heterogeneous simulation: a model-based integra-
tion approach. Simulation 88(2) (2012) 217-232

Ledeczi, A., Balogh, G., Molnar, Z., Volgyesi, P., Maroti, M.: Model integrated
computing in the large. In: Aerospace Conference, 2005 IEEE, IEEE (2005) 1-8
Katz, R.H.: Toward a unified framework for version modeling in engineering
databases. ACM Comput. Surv. 22(4) (December 1990) 375-409

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning ap-
proaches. IJWIS 5(3) (2009) 271-304

: GIT Homepage. http://git-scm.com Cited 2013 Mar 14.

: Passport, authentication middleware. http://passportjs.org Cited 2014 Mar
17.

Li, M., Wang, C.C., Gao, S.: Real-time collaborative design with heterogeneous
cad systems based on neutral modeling commands. Journal of Computing and
Information Science in Engineering 7(2) (2007) 113-125

Kong, S., Noh, S., Han, Y.G., Kim, G., Lee, K.: Internet-based collaboration
system: Press-die design process for automobile manufacturer. The International
Journal of Advanced Manufacturing Technology 20(9) (2002) 701-708

Boger, M., Graham, E., Koster, M.: Poseidon for uml.
Pode ser encontrado em http://gentleware.com /fileadmin/media/
archives/userguides/poseidon_users_guide /book1.html (2000)

Izquierdo, J.L.C., Cabot, J.: Enabling the collaborative definition of dsmls. In:
Advanced Information Systems Engineering, Springer (2013) 272-287

Izquierdo, J.L.C., Cabot, J., Lépez-Fernandez, J.J., Cuadrado, J.S., Guerra, E.,
de Lara, J.: Engaging end-users in the collaborative development of domain-
specific modelling languages. In: Cooperative Design, Visualization, and Engi-
neering. Springer (2013) 101-110

Thum, C., Schwind, M., Schader, M.: Slima lightweight environment for syn-
chronous collaborative modeling. In: Model Driven Engineering Languages and
Systems. Springer (2009) 137-151

Stepper, E.: Connected data objects (cdo). Website http://www. eclipse.
org/cdo/documentation/index. php, seen November (2012)

Cataldo, M., Shelton, C., Choi, Y., Huang, Y.Y., Ramesh, V., Saini, D., Wang,
L.Y.: Camel: A tool for collaborative distributed software design. In: Global
Software Engineering, 2009. ICGSE 2009. Fourth IEEE International Conference
on, IEEE (2009) 83-92

Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Van Mierlo, S., Ergin, H.:
Atompm: A web-based modeling environment, MODELS (2003)

Altmanninger, K., Seidl, M., Wimmer, M.: A survey on model versioning ap-
proaches. International Journal of Web Information Systems 5(3) (2009) 271-304
Diskin, Z., Czarnecki, K., Antkiewicz, M.: Model-versioning-in-the-large: Algebraic
foundations and the tile notation. In: Proceedings of the 2009 ICSE Workshop on
Comparison and Versioning of Software Models. (2009) 7-12

Brosch, P.; Seidl, M., Wieland, K., Wimmer, M., Langer, P.: We can work it out:
Collaborative conflict resolution in model versioning. In: ECSCW 2009. Springer
(2009) 207214

Altmanninger, K., Kappel, G., Kusel, A., Retschitzegger, W., Seidl, M., Schwinger,
W., Wimmer, M.: Amor—towards adaptable model versioning. In: 1st International
Workshop on Model Co-Evolution and Consistency Management, in conjunction
with MODELS. Volume 8. (2008) 4-50

Ehrig, H., Ermel, C., Taentzer, G.: A formal resolution strategy for operation-based
conflicts in model versioning using graph modifications. Springer (2011)

: Lucidchart. http://wuw.lucidchart.com Cited 2014 Mar 17.

: CircuitLab. https://www.circuitlab.com Cited 2014 Mar 17.

